Historically, the primary motivation for the study of differentiation was the tangent line problem: for a given curve: find the slope of the straight line that is tangent to the curve at a given point. The word tangent comes from the Latin word tangens, which means touching. Thus, to solve the tangent line problem, we need to find the slope of a line that is "touching" a given curve at a given point, or, in modern language, that has the same slope. But what exactly do we mean by "slope" for a curve?

The simplest case is when y is a linear function of x, meaning that the graph of y divided by x is a straight line. In this case, y = f(x) = m x + b, for real numbers m and b, and the slope m is given by

where the symbol Δ (the uppercase form of the Greek letter Delta) is an abbreviation for "change in. " This formula is true because y + Δy = f(x+ Δx) = m (x + Δx) + b = m x + b + m Δx = y + mΔx.It follows that Δy = m Δx .

This gives an exact value for the slope of a straight line. If the function f is not linear (i.e. its graph is not a straight line), however, then the change in y divided by the change in x varies: differentiation is a method to find an exact value for this rate of change at any given value of x. In other words, differentiation is a method to compute the rate at which a dependent output y changes with respect to the change in the independent input x. This rate of change is called the derivative of y with respect to x. In more precise language, the dependence of y upon x means that y is a function of x. This functional relationship is often denoted y = f(x), where f denotes the function. If x and y are real numbers, and if the graph of y is plotted against x, the derivative measures the slope of this graph at each point.