Watch
Watching this resources will notify you when proposed changes or new versions are created so you can keep track of improvements that have been made.
Favorite
Favoriting this resource allows you to save it in the “My Resources” tab of your account. There, you can easily access this resource later when you’re ready to customize it or assign it to your students.
Derivatives and Rates of Change
Differentiation is a way to calculate the rate of change of one variable with respect to another.
Learning Objective

Describe the derivative as the change in
$y$ over the change in$x$ at each point on a graph
Key Points
 Historically, the primary motivation for the study of differentiation was the tangent line problem, which is the task of, for a given curve, finding the slope of the straight line that is tangent to that curve at a given point.
 If
$y$ is a linear function of$x$ , then$m = \frac{\Delta y}{\Delta x}$ .  The derivative measures the slope of a graph at each point.
Term

slope
also called gradient; slope or gradient of a line describes its steepness
Full Text
Historically, the primary motivation for the study of differentiation was the tangent line problem, which is the task of, for a given curve, finding the slope of the straight line that is tangent to that curve at a given point. The word tangent comes from the Latin word tangens, which means touching. Thus, to solve the tangent line problem, we need to find the slope of a line that is "touching" a given curve at a given point, or, in modern language, that has the same slope. But what exactly do we mean by "slope" for a curve?
The simplest case is when
where the symbol
It follows that
Slope of a function
A function with the slope shown for a given point.
This gives an exact value for the slope of a straight line. If the function
Assign just this concept or entire chapters to your class for free.
Key Term Reference
 curve
 Appears in these related concepts: Arc Length and Surface Area, Arc Length and Speed, and Area Between Curves
 derivative
 Appears in these related concepts: Separable Equations, Overview of Derivatives, and Financial Leverage
 differentiation
 Appears in these related concepts: WBC Formation, Considering the Environment, and Socioemotional Development in Adolescence
 function
 Appears in these related concepts: Solving Differential Equations, Visualizing Domain and Range, and The Vertical Line Test
 graph
 Appears in these related concepts: Graphing Equations, Graphical Representations of Functions, and Graphs of Equations as Graphs of Solutions
 linear
 Appears in these related concepts: Factoring General Quadratics, Exponential Growth and Decay, and Graphs of Linear Inequalities
 mean
 Appears in these related concepts: Mean, Variance, and Standard Deviation of the Binomial Distribution, Understanding Statistics, and Averages
 real number
 Appears in these related concepts: Intermediate Value Theorem, Solving Problems with Inequalities, and Introduction to Complex Numbers
 tangent
 Appears in these related concepts: Graphs of Exponential Functions, Base e, Circular Motion, and Special Angles
 variable
 Appears in these related concepts: What is a Linear Function?, Math Review, and Introduction to Variables
Sources
Boundless vets and curates highquality, openly licensed content from around the Internet. This particular resource used the following sources:
Cite This Source
Source: Boundless. “Derivatives and Rates of Change.” Boundless Calculus. Boundless, 26 May. 2016. Retrieved 24 Jul. 2016 from https://www.boundless.com/calculus/textbooks/boundlesscalculustextbook/derivativesandintegrals2/derivatives9/derivativesandratesofchange432928/