Watch
Watching this resources will notify you when proposed changes or new versions are created so you can keep track of improvements that have been made.
Favorite
Favoriting this resource allows you to save it in the “My Resources” tab of your account. There, you can easily access this resource later when you’re ready to customize it or assign it to your students.
Bases Other than e and their Applications
Among all choices for the base
Learning Objective

Distinguish between the different applications for logarithms in various bases
Key Points
 The major advantage of common logarithms (logarithms to base ten) is that they are easy to use for manual calculations in the decimal number system.
 The binary logarithm is often used in computer science and information theory because it is closely connected to the binary numeral system.
 Common logarithm is frequently written as "
$\log(x)$ "; binary logarithm is frequently written "$\text{ld}\, n$ " or "$\lg n$ ".
Term

logarithm
the exponent by which another fixed value, the base, must be raised to produce that number
Full Text
Among all choices for the base
The major advantage of common logarithms (logarithms in base ten) is that they are easy to use for manual calculations in the decimal number system:
Thus,
Before the early 1970s, handheld electronic calculators were not yet in widespread use. Due to their utility in saving work in laborious multiplications and divisions with pen and paper, tables of baseten logarithms were given in appendices of many books. Such a table of "common logarithms" gave the logarithm—often to four or five decimal places—of each number in the lefthand column, which ran from
Because baseten logarithms were most useful for computations, engineers generally wrote
Binary logarithm (
The binary logarithm is often used in computer science and information theory because it is closely connected to the binary numeral system. It is frequently written as "
Assign just this concept or entire chapters to your class for free.
Key Term Reference
 binary
 Appears in these related concepts: Logarithmic Functions, Gender as a Spectrum and Transgender Identities, and Sexual Orientation
 e
 Appears in these related concepts: Derivatives of Logarithmic Functions, The Natural Exponential Function: Differentiation and Integration, and Inference for linear regression
 function
 Appears in these related concepts: Solving Differential Equations, Average Value of a Function, and Functions and Their Notation
 inverse
 Appears in these related concepts: Inverse Functions, Hyperbolic Functions, and The Law of Universal Gravitation
 inverse function
 Appears in these related concepts: Exponential and Logarithmic Functions, Introduction to Inverse Functions, and Introduction to Exponential and Logarithmic Functions
 natural logarithm
 Appears in these related concepts: The Integral Test and Estimates of Sums, Natural Logarithms, and Common Bases of Logarithms
Sources
Boundless vets and curates highquality, openly licensed content from around the Internet. This particular resource used the following sources:
Cite This Source
Source: Boundless. “Bases Other than e and their Applications.” Boundless Calculus. Boundless, 26 May. 2016. Retrieved 31 May. 2016 from https://www.boundless.com/calculus/textbooks/boundlesscalculustextbook/inversefunctionsandadvancedintegration3/inversefunctionsexponentiallogarithmicandtrigonometricfunctions13/basesotherthaneandtheirapplications872803/