Watch
Watching this resources will notify you when proposed changes or new versions are created so you can keep track of improvements that have been made.
Favorite
Favoriting this resource allows you to save it in the “My Resources” tab of your account. There, you can easily access this resource later when you’re ready to customize it or assign it to your students.
Kinetic Energy and WorkEnergy Theorem
The workenergy theorem states that the work done by all forces acting on a particle equals the change in the particle's kinetic energy.
Learning Objectives

Outline the derivation of the workenergy theorem

Discuss the workenergy theorem
Key Points

The work W done by the net force on a particle equals the change in the particle's kinetic energy KE:
$W=\Delta KE=\frac{1}{2} mv_f^2\frac{1}{2} mv_i^2$ . 
The workenergy theorem can be derived from Newton's second law.

Work transfers energy from one place to another or one form to another. In more general systems than the particle system mentioned here, work can change the potential energy of a mechanical device, the heat energy in a thermal system, or the electrical energy in an electrical device.
Term

torque
A rotational or twisting effect of a force; (SI unit newtonmeter or Nm; imperial unit footpound or ftlb)
Full Text
The WorkEnergy Theorem
The principle of work and kinetic energy (also known as the workenergy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle. This definition can be extended to rigid bodies by defining the work of the torque and rotational kinetic energy.
The work W done by the net force on a particle equals the change in the particle's kinetic energy KE:
where v_{i} and v_{f} are the speeds of the particle before and after the application of force, and m is the particle's mass.
Derivation
For the sake of simplicity, we will consider the case in which the resultant force F is constant in both magnitude and direction and is parallel to the velocity of the particle. The particle is moving with constant acceleration a along a straight line. The relationship between the net force and the acceleration is given by the equation F = ma (Newton's second law), and the particle's displacement d, can be determined from the equation:
obtaining,
The work of the net force is calculated as the product of its magnitude (F=ma) and the particle's displacement. Substituting the above equations yields:
Assign just this concept or entire chapters to your class for free.
Key Term Reference
 Law
 Appears in this related concepts: Damped Harmonic Motion, Photon Interactions and Pair Production, and Models, Theories, and Laws
 acceleration
 Appears in this related concepts: Position, Displacement, Velocity, and Acceleration as Vectors, Mass, and The Second Law: Force and Acceleration
 application
 Appears in this related concepts: Physics and Other Fields, The First Law, and XRay Imaging and CT Scans
 displacement
 Appears in this related concepts: Calculus with Parametric Curves, Reference Frames and Displacement, and Interference
 energy
 Appears in this related concepts: Energy Transportation, Introduction to Work and Energy, and The Role of Energy and Metabolism
 equation
 Appears in this related concepts: A General Approach, Equations and Inequalities, and Equations and Their Solutions
 force
 Appears in this related concepts: Work, Force, and Force of Muscle Contraction
 heat
 Appears in this related concepts: Heat and Work, Work, and The Greenhouse Effect
 kinetic
 Appears in this related concepts: Friction: Static, The Kinetic Molecular Theory of Matter, and Sculpture
 kinetic energy
 Appears in this related concepts: Elastic Collisions in Multiple Dimensions, Friction: Kinetic, and Pressure
 magnitude
 Appears in this related concepts: Roundoff Error, Multiplying Vectors by a Scalar, and Components of a Vector
 mass
 Appears in this related concepts: Physical and Chemical Properties of Matter, Mass Spectrometer, and Mass
 net force
 Appears in this related concepts: Diffusion, ProblemSolving With Friction and Inclines, and Electric Fields and Conductors
 parallel
 Appears in this related concepts: Charging a Battery: EMFs in Series and Parallel, Resistors in Parallel, and Combination Circuits
 potential
 Appears in this related concepts: What is Potential Energy?, Conservative and Nonconservative Forces, and Linear Expansion
 potential energy
 Appears in this related concepts: The Chain Rule, Escape Speed, and Energy Conservation
 resultant
 Appears in this related concepts: Adding and Subtracting Vectors Graphically, TwoComponent Forces, and Forces in Two Dimensions
 rigid
 Appears in this related concepts: Connected Objects, The Physical Pendulum, and Center of Mass and Translational Motion
 rigid body
 Appears in this related concepts: Stability, Balance, and Center of Mass, Center of Mass and Inertia, and Motion of the Center of Mass
 velocity
 Appears in this related concepts: Tangent and Velocity Problems, Centripetial Acceleration, and Graphical Interpretation
 work
 Appears in this related concepts: Conservation of Energy in Rotational Motion, Free Energy and Work, and Potentials and Charged Conductors
Sources
Boundless vets and curates highquality, openly licensed content from around the Internet. This particular resource used the following sources:
Cite This Source
Source: Boundless. “Kinetic Energy and WorkEnergy Theorem.” Boundless Physics. Boundless, 28 May. 2015. Retrieved 28 May. 2015 from https://www.boundless.com/physics/textbooks/boundlessphysicstextbook/workandenergy6/workenergytheorem63/kineticenergyandworkenergytheorem2786249/